
Week 3 – Wednesday

 What did we talk about last time?
 More on Big Oh
 ADTs
 List implementation with a dynamic array

Bitmap Manipulator

public class ArrayList<E> {
private E[] array;
private int size;

public ArrayList() {}
public int size() {}
public void add(E element) {}
public E get(int index) {}
public boolean remove(Object o) {}

}

 How long did each method we implemented last week take, in Θ
notation, where n is the number of items already in the lists?

 Constructor
 Θ(1)

 Add: Insert element at the end of the list
 Θ(n) (but only in the worst case)

 Get: Retrieve element from arbitrary location
 Θ(1)

 Size: Get the current number of elements stored
 Θ(1)

 Remove: Remove an object from the list
 Θ(n)

 Amortized analysis is one way to consider average running time
 The amortized cost per operation of n operations is the total cost

divided by n
 If an operation is expensive only once in a while, the amortized

running time might be much less than the worst case running time
 A random search could make you take a long time to get through airport

security
 Since you don't usually get stopped, your average time isn't much

different than when you don't get stopped

 In the Add operation, it usually only takes Θ(1) time to put an
element at the end of the array

 The only time it takes Θ(n) time is when you have to resize the
array

 To simplify the analysis, let's assume:
 It takes 1 operation to add, ignoring the resize
 It takes n operations (where n is the number of things already in the array)

to resize
 We are only adding, no other operations

 The amortized running time depends on your strategy for resizing

 The most space efficient approach is to keep the array
completely full

 Thus, you have to extend the array each time you add an item
 To add n items, you'll have the following resize costs:

1 + 2 + 3 + 4 + … + (n – 1) = n(n - 1)/2
 Plus, it would have cost an additional n to do the adds

themselves
 Total cost: n(n - 1)/2 + n
 Amortized cost per operation: (n - 1)/2 + 1, which is Θ(n)
 Yuck.

 If we double the length of the array when we resize, we won't
have to resize as often

 To add n items where 2k ≤ n < 2k+1 , you'll have the following
resize costs:

1 + 2 + 4 + 8 + … + (2k-1) + 2k =
∑𝑖𝑖=0𝑘𝑘 2𝑖𝑖 = 2k+1 – 1 ≤ 2n – 1

 Plus, it would have cost an additional n to do the adds
themselves

 Total cost: 3n – 1
 Amortized cost per operation: essentially 3, which is Θ(1)

 A stack is a simple (but useful) ADT that has three basic
operations:
 Push Put an item on the top of the stack
 Pop Remove an item from the top of the stack
 Top Return the item currently on the top of the stack

(sometimes called peek)

 When are stacks used?
 Implicitly, in recursion (or in any function calls)
 Explicitly, when turning recursive solutions into iterative solutions
 When parsing programming languages
 When converting infix to postfix

public class ArrayStack<E> {
private E[] data;
private int size;

public ArrayStack() {}
public void push(E value) {}
public E pop() {}
public E peek() {} // Instead of top
public int size() {}

}

 Array implementation of stacks
 Queues
 Array implementation of queues
 Office hours from 4-5 p.m. cancelled today because of

Faculty Assembly

SCAN the QR CODE to REGISTER

 Keep reading section 1.3
 Finish Assignment 2
 Due this Friday by midnight!

 Keep working on Project 1
 Due next Friday, September 20 by midnight

	COMP 2100
	Last time
	Questions?
	Assignment 2
	Project 1
	Array backed list
	Constructor Implementation
	Add Implementation
	Remove implementation
	Running time for ArrayList operations
	Amortized analysis
	Amortized analysis of ArrayList
	Strategy 0: Resize on every Add
	Strategy 1: Double the array length on resize
	Stacks
	Stack
	Keeping track of things
	Array implementation of stack
	Quiz
	Upcoming
	Next time…
	Slide Number 22
	Reminders

